SA's Best Interest RatesStandard Bank
South Africa's fixed deposit, notice deposit rates compared and updated on a monthly basis 😃
Welcome to my interest rate comparison site.
👋 Hi, I'm Walter. My goal is to help you find the best interest rate for your money. I source fixed deposit and notice deposit interest rates from all the banks on a monthly basis. And rank them.
PS. all interest rates on this website last updated 1st July 2022
When it comes to finding the best interest rate, did you know...
Your age matters. Some banks will pay you better rates if you are older than 55. I take this into account. The fixed deposit interest rates are displayed for individuals younger and older than 55.Your balance matters. Higher rates can be achieved by depositing more money with some banks. That is why you can rank interest rates by balance.
PS. If you like this site, you might also enjoy my other site: mymoneytree.co.za. I write on investing topics.
👋 Sign up to my newsletter' width='200' height='318' xlink:href='data:image/png%3bbase64%2ciVBORw0KGgoAAAANSUhEUgAAAEAAAABmCAYAAAB7nJf1AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR42o2b95tVVfLuz2937jgzKkgGE2LAQBJURkQRIwqIAQERVESQnJqcc86xoYGmu2kaaFIDklEBBRHjjJPu97n3uc9zw1%2bxbn2qVu2zzhHne3%2boZ4ezzz6r3nrrrVpr75NbsXJhWLl6cVi9ZklYs25pWLdhediwcWXYuHl12LxlTdiybW3YVro%2blG7fELaXbQo7dm4KZbs2h93l28LuPdtCeUVpqKjcHiqrdoSqvWVh776dYrvCvv27Q82BPWH/wQq1A7WV4eChylCLHcaqwiHsiNlhtb1yLjX57NBe%2bY5YbVWoPVgVDh6sDAcOyP32V4Sa/Xvkd8rDvn3Y7rC3eqeMQayqLFRW7ggVFdtD%2bZ7tOtZdu7eGXbu2hDIZ//YdG9WfraXrQm7lqkXR%2bWVh3XpxflN0fmt0frs4L1/YUWaO79q9RW%2bYd7wsVFWb09U4XmOOYwdqK8TpKrVanDu6V508LNsjx6ozO4rV7ZNtTbR99tlR2R6V7ZFq%2bZ7Y4WoFppb7cV9AjYDsFzBq5LcBo7o6ghGB2CNj3SPBMiC2hJ07BYgygNgQcu78%2bg0rxPlV4vwqdX7rtnWKUqlcRNR3CnqgWBB1Ii4/pI5LJGoOlIf9OB4jTpRriSSDF2cOq2PiYF1NOHY8b3Un9oc6tsf3F%2bwfq8ubASTGfY7mAYFRMAsw%2bF1%2bX5lRI0DAir27BIidytA9yggBoVxA2L1Z/NoYchp5nI%2b035I4v71so1JmZ6Q8jnOTCujuUSfi%2b6PjRBzHY8QZJFHE4aM4pA4eCMdPmp3w7WfYwUI7aabXnjCrO35A73EUQADyaI2wY5/%2bjjMDMAyImCI1MFPYUC1s2LtDA1deARsMhNy6JPJbtq7VvMicF8d3QnlBbU%2bS6/mo7847fsgcP3QTx%2btO4IiYOlcbTp46pPYZdtrs1Jn8vlmt2al4fQoM9zt%2bUAGpi2CQMqSWakoBEJIW%2b/MgVAkIyobKUgFha8itl8hvctqr8%2bvzkXfnK2PUo8hlUT8YI344Ok6%2bQlNoe9wihuOZw6cPh8/OHFE7JXb6bN7OnEvsbPrZYblWzIE5VavAnfzskIBRq4DAKk2nuhr9fU0R1QuAQITRpN2FbKjariDkNhY477QXsSvfGp0vjZQvK1B3V3Wol0acfFWaS5QY5MlTh9Vxc/ioOHjM7PyxcDaxcxfqxI4VmH12NJw9x/eOGjACBqaMORUZIqwiVdAPgHC9QEBhBCAcqKUilev4q2skfWNK5H7l/C53fqvR/qbOV%2bTpjlIfM%2bctv6Pjnx36leNnz9eFsxeOq50TO3/xRDj/%2bQndXvjc7XjeLnKNmQOkgJw3QGDIqQjGSQHCUqQYiGotsZTeg7XOhnJNC9ic2yqlDtrvcOe1zJnzXturM%2bfLC50/lo86IgUlofqpmzh%2b7qI5as6eVLv4xWfh4pefhc%2b/PCX2WZGdNPvCthe/iAApIHXhvDMEIM7FVIlp4kKqQNTl9aH2sGtDTAnxKbdt%2b7qM9qngpY1NJnYHTexwPos6uX4iL25EvcDxC0TSHTan1eFLp8MXl0%2bHL7ErZxKL5y6fUvvikmwvsc0Dc1GAMEAEjIQZZzLNyDPi%2bMk8G1wkFYRaY0IurfOZ2hfRHtpkzh/eexPK10YlR8Dyjnu0P49RxvkvxPEvsStnBYAz4dJXZ8NlsUvRLqudCVe%2bti12SUBxM1A%2bUwNQWHHxc2MFaZIBceawjunkqYOJPliDRQBhA2zO0QyU7dqkee%2blLk/7csv56DxfQvAoO9RjbpyP%2bhHNS5x3xzXaGsHT6vi165%2bHr66eF%2bfOqaPf/XAlfP3NRbVr334Rrn/3ZfhGtlfl%2bKtr58PXYl9dPafXA8iVCM4lDJakrIiMOHexTlPjzHnTCMZmbLCeAzYQQJozOtSci16%2bu9thtJeSoTlfXOrEPPonNPJ554kAgqVR0WifinQ%2bow7SYC1dNl/T4/sfvwqLl85TDTh7/riCTflasGh2OCb3vvH9ZQHmggF07YIAckHBU0CuRqZcOZOxIk0PBeKCAYE%2bnIpsYLykK%2bM/LEEEhFxa64325vw%2brfN7ChocBwFhOaH1vVZvDgAW%2beMyAKM8Eb905Uyk9DmJ7Jfaac6bP0N7BMpjv/5vSw%2byOly/cUkZw2/Omz9TgrE9/PDT1%2bGqMAbgrn37ue1fvyjsuBABESZdPZelCr/1RUwPTw3Gc1aAIDik50kJloIgY6dBQ8RzrvgV0hhYk2MTGs372jz1HYCDUk6gUJ22sgcjAEc15915on5Jog5ljb7nFQDa5%2bkzSrSRYpKF0C5bsUCc%2bjz89W/falrBAJqzn375Jnxz40tJi0sKEPsYgAAGaQIYMMNTChBgG2nHOC4IEIyL4Jx2ECRljzsIUr1y5R79RPFrYvQLAciDAADkEip7GuETSpP3TnuPPJQlWgz2ugyegTKwH376Ss/98vdvw7ffXdbP0INvxVnE8sefr4bvJEU4x5Z0%2bBYDjO8MiG%2bUGQbG1zcF4rTeC2blmXCsAARSLeclT/v7mPc4nxotJSXkcOys6LDIIwAgt8g1BwAHGQCDAYBrSl0zHMAYPE6x5dicNwd/%2bPlr/Yxz30cQbkQDhBvfX8mDoUB8aSmiwnlR0uJ8uCy/TUWhylwEBBkX4zMmHJMxH9EUPC59S64i5n42uZF2kdZROyedalZoBwUIR3QaanN56KoaIHllABxX1K/f%2bCI6eEkd8ej7PrntzuPcT3%2b5pk4QddLg579%2bo1vOc91ffrkefvnHDbHvwj/%2b248Kyg2AYfsDzDAgrsk9lA0CwldXL2jaAYKmhIIg6QATRHBJ2VOnjQk5z33v9FT4oupb1PcWCCDHNBUOgAmgAcD%2bgoWzRN3nhiViq1YvVkBgC43UXySvN8uME1riGFGhCfv7P7/T%2by%2bU/F%2b7bnlYtnyB6sQ/xWF0g2rBqhU9C0Bh30cQvovMAITrrhHKhgiC9hunjQmfmyacgQlnrETmKHvVacOjeW8MOBSdPhRB8E4KAGgsqKteAlFevj9l2gTNQ8838p1Ga%2b365eLQD3bN1PGa/9OmT9RJ1H/89591NYqKhHOmI2cVgMVL5ioYMIb5yrwFM8PPAuSNqA/fC6M8TTS9AOG6gQAbNB2unC3QBAUhji%2bn9PeaH53HXPQyx4/6dLdanQcEAPAaS92lvZwqANTFxQ80gMHRZzDpgv4/So4juEM/%2bUBZAeVhBstvlEQGBoBEGJCIPJT9q%2bz/j//5S1gifQQTsF/%2bfiPTiu88JRJtQHMsJS5oGVYmSGlGpyiRqgdy3wyA/UUAWAr4mt2%2bSPsabSetpdwXV3OsH6AVZXlq%2bKdDAgutm7asVjFkUEQW5zz/Aafvu29qTcZRBUBSY%2basyQoE7TXXAcCKVYu06fruxyvhX//xo9x3jbbof5O0QTgVgCK7EVMiL44XlAmuB7BVK8O5upDz2m8MiI3P4cpkgaM65r2t3R3xBcy6BABxBAZwrzlzp2mUqQL8ECJFCqzfsFKjCOolk8eFr4UdE0vGKB1JDT5nvfB//99/qQg6AOjB6TNHxfmftMKUTBmnUf0%2bRjx1%2bsZNQPhG0uFrrw5f5VPhYkyFnDkvAngwX/sB4Fcrt9FpFUZKYUwFX9REBwBx7rxp%2biMII/lG7noKEGkAggEoO1SeO296%2bMe/vtfGaFLJ2LBm7TLNe9YeAYYUgBmr1ywNM2dPUeX%2b%2ba/XlOrqdLTiYzt3WUX4amynr3h5lFT4nFQQEc5Z22vlTxmQAVCVOX7k2F41m1ZWy3XlwpDKDByY4Gt5XhmgmM/t0%2bYIcL6RQV2RvGTQnGNw5KxR0%2bb9lyVn%2bZzz3IPcNQ25mpVVd9r7i18fX876Dk0FZcE5HYsLYo7oe%2bQLNaAic9DUvzKrAgB1SNOkUgFyHcBsWpzvDXBKW%2bMIgEeCrTvO4NjiWD6SNnDvEjGOvXn6/zG/XyaKGQgWCEDNeeQt/1ntqVDHOAYEd56oHzy0R7fKAH26U5GJo5dF7w59dkg0i1ngXaKD4O3y1WsXY49vgGi7G7cOxm/Zv3M%2b6xEiCJoKTJ6EBTnv/Lz210bHDh6uyKfFIVpiGqVdut23v0z3AYJUcS3whQdnAiDY1NhWg6CdA%2bEg%2bPqAb1NWeC13gFJQrsd6n7bafv56nCsUg5SmgvcGCgAOu/NW/yvVaRXHA%2bb4vv071apryuSzcnG2Jltx8SoBALYe4NQ/pctV7PvgLa8vFoDwgzYzlzW/ucZZQRr89JerWlXY%2bj24nn0voX/523XtJ1wcnTFuKYuuJb0BZTFnVI%2bOKwhGfQDA4ZoDO5UJgLB33w6N/vyFM8JkKUfTpk8Iq9cu1tWWY3X79B6z504Ns%2bdM0WqwYNEsTQPqPftLl88PCxfP1gbIqQgATH8XyufUfFji0eN7tNRMmXks5ytKLN7gPBWMz1auWmwPeNcuVWBdPH/Lvo6LK1yby9re%2bJTW6Y7hcHXNjoz2FVVbZX9nGDpssLS2S6W8bQ4TJ44K02dO0sVIHjmNGDVU77P/gK3BQ3kmXJOl/aX1pL%2bg/lPOGOjMmZN1oYRUoUOcOGl0phO01Sg19%2bDRHVpCQ0MLzXd93ZHuk4e0dHc45pG%2bmXlquRjmXPQOHwUEU391%2bAArQ2UKANGH%2blXVpZL3u8PoMZ%2bEyr3btSM8cepAGDb8Q3Fym3y%2bI4wZOzzU7LfUIfoMnvUGIs8Pg/okAYBSSY8PM2h4GMzfpDfgUTwPaokwjrFazTIWKUAl4H6sKrmT9BMwi/sxg3QHUzEtPpf2BTko73lvWlARWbBLo24ssFQAgH37d4SRoz4OZbs2KijHT%2b4L48Z/Ki3sGgVu0Af9w4yZJWHRktlaEYgsj6M%2bHjpYzs0JM2aUqJNMkmhreS5J/hPJb6R1pSQzm/yr5DUiRUvNOiITKO0PJHdppgAAB7jPIgGX5xKwIqsoRc6m1cb3EwAq1Ez4dkW13xXzfns0HihuCdUCwKjRQ0PF3m0qhFu2rQqDP%2binwri9jG5utNz4jM4NeM53XgSRTpBpMr05EYR%2bOEcajBs/wuYMAgL9/rQZE7WjZHDMN2DF//o//9T8ZiqtaTOrRCNrAHytLKq7CQCp46nzXn2wnEV9T3xQkEZ9hzpeuZfH4ps0%2bmzRgGHDPxAWDAkTJo4IHw0ZELaWrlYAduxcHwYN7hemTh%2bvNmv2ZK0UaMOCRTMlf8/G5TNbOWYwLMiSErynQG7zhgrtKwDNl6nv/IUz9bNZs6aoQHJ%2b3vzp6owurQtoMIYJFAAU9xfFDnu5dcsxcOq51vn9%2bVxH8Ij4nqotoXzPRjneIpHcoCBsL1srA10itliu3ZYJ5N59pWFn%2bSYBZI3k7kZ9vuj9AQNMH4T6s0DW/nUiVb1T%2bwfaZFjC4NgnsnSoHLvTAJH2DfT2vl/sbLHD6bGKoDU4uzXHq6PoVVVvV4dwFqd37l6v%2b2W71kmU1%2bq5PZWb1XYLOHwGUwCO%2b1hzxNS5WucOvnwOG3wFySZLtnSNw1abz2aryhjnWfmF7pfjU6NiJ1LHb/ZZsfk9fPE057Sv3l/oPM45ADiN89vL1oTSHat1i3EuBYPvVe0t1f4BYEktb5N9Fbl4Gc2ZYJ2itcxuDkQ6lyi21Kn/zHG3S1fOZJbzXMdxoli5d6tuPboOAA5v2746A8DOrc3A4Vq%2bi/OUQ%2b6LqNYeriyYTtfFtUR7jJYHIQXDgbC5%2b2cFwPjAi0EqBqjY6WLHMwDy%2bb5Zc56o%2bzHOm61XxzdtWS6qv1L3cby8YqNct0kA3KYawfe5H7pCX%2bHTaJtUVWlVoDXm6Q0OOwguiDz2gu445owgBXylme5Qnf2Kbu/LZPZ4Sa9zENy533I8ZVaOyGHkueX7umR/vZrTHwC2lq7S442bl0kl%2bCiMGvOxbletma8MAJyJJSNF2UepzZxdogDskUZpupS4OdIi0y6zeqTLUjzIFCCWr1woLfRU3XoDxbM/lsoWLZ4TliybFzZKz0Bk%2bc7ylQu0AVomtlj6C5otQHQ23MxSx51BufIKqL4pi7Y77E473TGc3lq6UpR%2bfZi3YEoY/GE/6dqWSD8%2bO7w38G29du36ReGjj9/T%2b2zeukJslbJhxcr5YfyEEdol8jR69JhhqvD0C%2bOlnab8USlYO6Qd1qZHyuYE%2bYzH9aQNQKxdt0wdpUfgPT9KKN9j3sAzwtTJYkv1JQFgk9LemeDmue95z5ayt3nrcjm/Tmr01DBi5EcZYO8P6qsOr9%2b4JAwf8YGeK92xRgVWAVg1Xzq4KfryAlowUuYMOEWnRyMDjWECXeFSiTYvbPIYjMaIJTTSgGUzQPBlLu5Dx0nb7A6mjv6W464rpFnOxc7pnjIBA4Qt23iVbqkCsH7jUtUBGNCr98uSAkPD6z1fEqpPkPzfGtasXRje6dtLOrzh0hKPV11AE9bIrPG9ge9oGtA6b9i4Qp/s0sQQdQZKvwBVeWdp6fJ5Csa4CSM1NZh9jpWukeusJT6rj%2b6ZF5D/qXi6kzdz2h13y3mpI2Jp7rvy79hppY/IQm%2bMVJgxa0L4ZPigUCUCiLMlk0fp/uKlM8PosUPFmb3SwOzUzrH2cLk4NDfMmjNZGcAkincAKYc8mCEd7JmiRYz2mOV6Hn8zB%2bA6dAEQeAfAADij7/qwqJoC4A7%2blsOp8Z0MgOKoQ18iTfQxAFi9doGKHQDMnD1RABisorhm3aLQf8BbmgLLV84Nfd/tHSZNHim5/alEfLyK4IpVC6Q1LtF3dnwpjf4Ax3hJm0gjbOQ8ea6Pt2WAM2SqzfI8Ti5fsTAy55xGlQ6RVplu0tcf/53l30Q7kb19lvN8dxYQdZzCGVQf2mM4v3L1PBnkHNmfLw7NVVuzbqGmB5%2bzj0jCklWr5%2bv3Nm1ZoU2WryjhPLNPWKDvBYsxEPqF0h3r9TOc94VVf/zm3aOvOvkbIFyXOvaf2fmiV%2b9yxaWOaBNhBo8jOKUOrck7DQhs3WnYAQhsAc17BMri3ppS2ZbqRMun276kDggwAhBwxHsDHrTY%2b3%2bH7QXJxNxxn1O4I6lj/878%2b77NecnznIf2OIPTgICDGE6nIFD6nAEOFgAAHuzhXgCrHWLVtmxhxbrDPAhHj%2bdXlX1lOV1iP3nqULbUnn%2btthCUX79x%2btuWXst3c%2b44QmflblVGfRx2p5csm6kpwBYDkKXLZ%2bnngIDjfi8c514uqnSJ1TXbdY3Bu0ImS2x9tugvN/JSUzp5sjdDjyXvIh0raKPPxXeAfguQYofdHMwcA/WcxwmcZ4tTOOyUX7x0htTc6Wo4DggrVs9V1QcEGDFnbomyYP7CqdovACL3JlWWrZgj5W65fL5c1w02bFquM0VeWa3UdxTKdGme1/V5MMt8AqGkaeK9gCPxAS3PLgHI9k1M9W2whB3F29RhN0%2bxnFPey5wLHk4BAI4tXDxNnJqiW4DAeUDg%2bvETh4ep08eGseM%2bCcM//UBq9qQwddoYKU%2bTwxg5N3HSiLByldxn%2bewweepo6QjnqdrPmTdVGMJUeqsupM6YVSKgk0Ir9ekyK8s0SHR7vM1OZaAfWCsVg8VW0oUKwdbfKE8dK3Y4/czYZWmWI9ruvIsazhP1ZZgAsGDRVGl8JisIAIA5/efOn6w9AMd8f72AOXXaWGHOPDk3W7/PvWGa6sfKeRp9Gh2mzKxB7Ni5QVeYeZcfR4k%2bcwUiT3XQt7x51V2MN1roEkkbrsGxVDNcLwqdPVTw7NK3pFzOo%2b%2bCl%2bY9g8dZHJ87v0S3CyITcBiQcG7DJhM/7oN5/wD9S%2bNcomzX2jjT3KIrR6wu%2b9OlI8eqou3N3us9Fl/CSh%2b7pY76sa8xuIb4NTez9B8p/q%2bVnCs40XPq47znPyDMnTcpoz9McAD43AHzlOEe3BNg0RVE1c0XUBwIKoM9fLFFWH3%2bGJ9JHorPKvzttCNHCx/TO1Bp9UjF9Gbm1/gjPCxHFL3EFTY7Bgj5Pk%2bij8MIoKfB8pgemO87K2zOYL2BCauxwZfTdusa41ZdhKneV1YEwm6dO/jjOgOh6jffV/A/YLlDqRU76ytTbnw/h8NuXuMdDLY4iwbgPJGHAS6ErgfOCK8OgMH9vIfwBslZAADpMhqNkj92Y02RNUp7Cr0n6xtqCxiRf3vl14Ckr/PkHc3%2bQFG3r%2bB7OXfcHSCCKSA4j%2bEY0fcUYMt59hcsNIAUmKUzC%2b4DkD6JAgjKI4KYZ8IWXVlGFyqrS3V5zlKjTBlhT6jLs%2bW12vTPlhkY8b%2bINwElPfZ3HfKv/1XlUyAFIKX33HklGQiz5kxQELDZcyaKTQiz505UgcS4xtnhLDCRXJpNp9EF0oGGCRDWbVik32N%2b4axgTTIPhKdHeRErKoueaP82MH4uf01lfBG0IuS8s/PanuYyUcUxzrGPs3PmTwrTZ46V2eB4BWSOCCRsyKqEMMKbJQfBhdF1gSrBpImFlWkzxoRPRw6S2eBQPYdAKhCqEaUFQNA02Rst5QXMSN9qSYEpNr/OzB4G5by7w9K8Zh8ncYzPcHTa9NF6bs7cSSqMHvl58ydnjRLXuuPuvM8XEERng88ZJpYMD8NHvBdGjflA2eCTM9OJLdkqNWAABM8pAcJe6t4Vn2SXFzDErLzIRFfidfa438pwzintNHfjHJGev1Ciu6BEnQcEF8OFi6bpdsnymVn%2bp%2bYTJe8unQG%2bDwAANHzEwDB0WP8w7NP39Hqfl3jJdMFMgbBld6keNTuzafY%2bfb6xK3mpY3f2nNPNgMsbYOaU1uSxOEe%2bzxWKE9VZs3m%2bN1qjPWXaKKW7doNiLoBaHYh6jPzChP5eSZwBPrXGOAewo8d%2bFD746J3w0cfvhiFD35VWeYSCQ7XwpXefUFnvsFlF00roNi2jVA83Y0jZvzW71p6DYLkZEuUZs8YJtcfFvB6vW5yHAThPngKU5vzciSqASn0FoyTMkWMvj94guRHltLvkeNLkT8OAgb3De%2b/3EXszDBzUJwz%2b8G21T0e%2br/qDTgBECoI/hnMgnBVUD0qpsaPY3NlSBc0e/mxTELlHrkQGUzJlhKA/Up3FcfJy3ISPw4RJw9QAwg0wJk%2bxaw040wlNi9gtugAWG%2bcXSOoMHPRmeOfd18V66rZvv57h3f69FIz33n9DJlifZDrhFcOBcH1wMLxyWE%2bxpcg2J6zZEh/ebM4e%2b2G5MeOGBDecHT9xmFJz5OjBcu4jAedTjdikycN1CziYM8SrQVYFYm9QrAsushMmDQ9vvv2K2KvhjTdfVmMf69vvdQViyND%2bwph5mVZ4S50%2bkyxexU5BSZf6i5f980%2b7bA00N3L0IHV2xKhBqsSIkYvS6LEfKghjx3%2bsjMCIDkB5asACjJ5AdSSpCi6mPpkiXT4c8m54vVf30LP3CwXWu89Loc9br4S33nkt9H%2bvd%2bwNFmRrjv5YDkY4GP7Axle13Byc1NKVL99iuU%2bGDwgYDg/7dEAY9MFbKkwck48A4%2bCMFjCo14CQpk0KBoxAL1RcBRDXDoxr3u77Wnj1tW7hlR7P6fbVHt102%2bP1bgoEjHjrnVf1nq4Z6bojQMAIm22uzATTLX2a5ft%2bPl31csu5wx8O6avbAQPf0O3Hn/QT66/gUKoAgYYFIDCAIBUmFWnI9CiqWKobbMeOH6rRx/mXXn42vPhS12jPhpdfeVaAeC5jw6gxHxU0U2lJTXsJB8QNltx8uyJb6Xbj%2bznoNmBgH1Vi9slB9gHmo4/7ankiJRQQ2f9EWOL6YKkxNBNLAAEMZ8WUaSP12G3EqMHh5VefDT1eez68%2bHLX0O35P4fnuz%2bt9sKLzygor/V8Xg0dSBurtKIU9xbODrebHbul3%2bM%2bubfe6RHelryDmggRW4Do/94bsUx5iXorY4YzYtSYwVEnhmSpoRoxcVgGCsf22VABcoA42iW89np3dfq5bp0z47j7C8/IZ89LOjwnAXhbU2hOshbhLXrxrDU17zXSJf308%2bL1i5xTzs1VGSDMTJkBhPJFqgwZ2k9TwzUCRowaY4IJGFQR9tl6RSFt3h/8ZugmjvKbzz73VOj67JOZOQivvPqcpki/Ab0yXQGEtNVO5y0%2beUt7Dz/3W%2bazX%2b6Ts9zrprnpRi72euNF3Uec3njrZa3XMMPTw9lAVF1EASQ1mMJ5/xyncPRlcfKZrk%2bELs90UmMfQJ59rrOyA2GkIlCCvd%2bYHbvV%2bQvyrbvPYXzu4lbclqefp2sY3CcH7bq/0EXtVUGeCGg%2bCjDk5EuSqwAEIKQLTQuOkBoAASMwb2dNPE1AYQrnPxxiIsv3cfjFl56RqD8R/vz042Id9RzHz3R9UhkIAO/K75A%2b6IqLa1ph0mm4L9im8xg/Lv7MZq6TrUJJB5tzChKB7t27CA276H4%2bL7uoUhM1UuTNt3toalhamGBi7w9%2bSwEhd9EMGGLHb2nqmMi%2bEXr1flHBJOqd/9xB7PHQWYB4uktHPUfke4gO8H30xUFwcSUt0pI7a7atScxKSu%2bcuO/ll/mM6wnn%2bZ5Xpxw/3OWZJ7JcLKYlSo2h3q/37l6gE7Sy/QZQOYwVJp69tZTCELb9BrwRr%2bmVtb195Lt/lt99qvPj0TpmTHjn3dcUQBhEGqEtVBsHgrLrJdfLq4OSluD03LSZY2JJtnN0sdyjZPKIkOvcuYP%2bOHQkIrY1ahoInRUIY4HpxWs9u0cQXsnE0nr71wt6%2b779euk%2b57iGFAA4GMBvPPlUBzVA4Jjf43pYQzq50CKisMHLLu26g%2bF9SNqPuPmxf04bzvfS6pTr9EQ7GUT7wFb3n%2bwQnniyvWzbKxiWn08qC9AL6jfa0EPL1fOq6DiFc252/GrBMdQGNJxHZJ/q3EEtD0KH0EUAACyYM1hSCd1AT%2bhQR4x6X/sI60GGKBhjxw/JQEnLsB97%2bWVLEzZm3Mdq%2ber0Yci1b/9oeLxjm9CxU1s19v3YB/Z0F0sJLVeJPqAXMAPR6hn7eyoHTpIq6ZbPaHCoKlwPwwBcNY%2bI2WMAAAk/SURBVEAM0J9/4emMTaQSaUTpJCVoyqzq0J321wrDShLVxauNsSW27ZI63rWOHGVzHb1uON8ZKPewOU/usTYPhXYCQrv2j4QOj7cJ7Ts8JtvHIhBtMyAYZKoXXsef62YaQbUgRSir1HF1lB7/tW6x538uWjcF7WnVgA4KLADzO1QfnykCAmmEfqimDMpXHdLDbeiwfgXVxzvXoZ/0Lzhn1cjafQxQuV%2bu9cOtwqOPPRQeefRB2T4oADyqgAACgyJKmhIRBCJnQOTF0lPkBUkRnDDroluctXIKOPkyyz1wHCax5XdgQKHIRj0RgTVhfVMrChXn/UG2P4h9YQnOOFsw1hX4jrX3PdWYbiPWvo/lHnioZXio9X3hoYda6faRRx8Ibdq2VkaYPliOGgjt48A7Zox4pmu%2bYnhb6z2%2bg%2bEgAABmDOikDOA6RJB7v/RKV00Vmxb3yESVAafVBcdxkHMwxD/jPPMarn%2b7b49snSHVKKoMn2H8Tq7V/feE%2b1rdHVred1e47/67df%2bBB1uGBx/Kg6Ga0LFtcMFkwF45/qw1/PECNjgYDgS9RAoGRtPD/fiOM0wnSlFYe/cx/XAR9fbcy6lrhW/tfE91qneflzPt6fXGS8mx7feMvQjVLHfX3c3CXXc3D3ff0yLcc%2b%2bdCkTL%2b%2b5WA5wHHry3EAjEMlYMZ4iVsQ5ZetwMCGeHtbxPKWBt2z2sLOC%2bbLu/YDND9MR1xFPCwfCya46%2bVGAAB4BUGS/X%2bRb/hazNB2jYhuVa3Nk03HmXgYDdI0Dc29KAgA3Yg5Imj4lOWGo8mohkm0wnUo1IdQIw3Di28x2VSQjwE0%2b2U91xPXC26HpBBILBGxCv2PxEnFPBjcY1r/Sw9QRba%2bgaXpB2G4NtL7zURcE1Ropoq0lAnu8sALRoElrciTUNDsbdAoQDAAtIh4cfuV%2bZ8GgbA4LBt233SCKW7ZXKaZp4g6OCKQ4aQKYdfIf78X30hs%2bcIV5mAQEwvB1HWLs974500b6EOYsB0dUcl2v4PinG7%2bpvFgSmk25hXKcn2oZcs%2baNQ/MWjQ2EuyIAGQscAISylYDwgA4aMKgYAAGNccDKqJVQQOjYqZ06%2bcRT7TMRdQMg2MO9%2bH7bdq31e6QRA3TmeOoACg5p%2bsSUApiUMZzrKt9xQcW5jp2Mpew/IWPS/U5tss8UgKZNGwZAaNa8kYJwp4CgqSB6cG/Lu6IOmChSMjEAcEYYIA9kgEBnnDJw8gBZpPPpo8dyLdc7cApYFERMwehqgPhcAWBcT9AZTy2u90bO79k%2b9jfthKlt2j6sjGXfAibXyHW5xk0ahCZiTZs2Cs2bN86nQcICTYUH7s1EkXKpoDxoJfRBymjrVgoC1vrhPDikSps2ljL8sDlvjutAOzyW6Ej7aNaBWpdo%2b6SOz026PmtNmLPlSRXStuqkp%2bdj8pu6H3uc1DinY5DxKACNGwsIMKFZZEEEwViQrwytHjA2AMT9AghguEbgtAGSZwjgOCg0W7DBmeIaYtFqk1WVTkmqWCq1DU891T6bpD2dlF/syaeM2txbnY2/haPKzEctIA94sB66z/oeGWfr1veHXMNGdwRAaCrOkwaA0KxFEwXAmNC8oCrgcMuWdxVUCfZb3X%2bvgmLAWMqgHa4XDMwiYOliADysBghZVemYn48AjLXjxpq84LbNWETU/Z7uOGn6ECZjuF%2bCZGO8WwN2H%2bOP2sZYcw0b3qEM0FQQFjRpYkwwXUAgjRF3wYh70AbrF9CKeyND6CXuLWLLvfeZfijSsOMhSxUG98gjeRDc2rZ9OALySKYbLrJ27pFMX/jMAWzX7lG9F79z/wMtFXwauntjkBgLpd37HMbYSgCx1G0VcnfcUS80EhAaNWqgzisbojA2bdYwSw3Vh1gtHBgrnU0UHAABHH4gY4qzhP3IFmeIs%2bThh/OCmgLibGndulWmL5w3ZhmQOMH9iLQ1b3epk%2b6wOd1CRd2DAwsejMxQBtQXABo0rB8aNb5DHackmvON1JQVYjhLpHFcWZF1kHkzdrT41QD8Mx9ECg66AUNwiMF5lWGQj8YJGo4DVNayR4D9mGjjeNbMAYL8HinMuJvHlOY8Y2p5353xe3cKAPXrhYaN6quTVhHMYY1%2b3LfPGiogDoA1T00UMPuBpkkzZWDpgOSHLfItsxY7o2d0wCLTUnMe4WqNtTYRbe25LNHyiuROpx0sv%2bvMZExNmjbKxmvXNbNURtMcxFb3hFy9ereF%2bvVvD3c0iExodIdZY6yBpobZHZlONBWxbNrUgbL04IcQUW%2bqXDwbN7kj9OnTK7w3sH94vWcPiebDUsq6hAkTx8vM8MUwUM4/162rnu/TR2Zx7/SRjq57GDFyuDQt7fQ%2bDqgzCIdVsLV3sQg3S9jaLLK3adQyS18LnAIRBZ775G677U/h9ttvDWzr179NHW3QoH5AGxDIhgJKQ02RBgaKgNEwAmTls0EGRLPmjbNmyijXQgfZvn0bKVcdJaL362cPytT7yac6abQ7dGgjbXJnEbxHlNadnuggYtdGj4ly4b2bqiOWmla56F/SYLjDaSpbcBpn1qJFvvVXAOrVuz3UE%2bcNCLNbIzAZQ6JWAI4CFLcA0zAyp2kR8r7foGE9ZYJrCkwi7UgzE9oGFs3IIsTWBt5YgXTBvVvp7qnVXI/Tzy0lm2SMaJaMxR22MeVFPHfrrX8Mf/zjH8RuCezfemueEbfffpuBk1j9egaGp4yyxBnhXWUCRL7BsgG4sy5QJq7NC2hpYtVcGYBo%2bSyVc3fF7xnLmmpeewo2bZroFhUtNnh2LL/bzIBt4nrWvIkx4A9/uCX86U9/iGlwuzrOMUBw7Maxnrvj9izqphWWDmnVaJ5QrnmLwqriA3P9aJZQ1mej3o16VF1kXXSbNc9vYZHplY1D01jGR0Asbe18w3iuSTzPfs6jDwhEGBbccsvvlRV5JlgqkBpsNfpiphP1CxnQ1Frrxo3zoqkDKbgmD4IP2JmSV3Kj6J1R5IhWSum88waqa5Ub4%2bO%2b2TlJOVLRUriejpnzud/97r%2bE3//%2bdwoAdsst/1W2v1cDCGcHwDggljZy/o9/yAACFBdN9ukvGjaoHwdhwqo/2iieEwNAAHUtSQXLha5JNlttHMtbnt6NEhD5Tf3dqFcpcz1lGyW/yfl6Yv8P1p7TZgv2VqsAAAAASUVORK5CYII=' /%3e%3c/svg%3e)
When you sign up you get a free 40-page PDF Fixed deposit comparison report.
- ranks all the fixed deposits in SA
- rankings for different investment amounts & senior citizens
- you receive it monthly

Read more
' width='1280' height='720' xlink:href='data:image/png%3bbase64%2ciVBORw0KGgoAAAANSUhEUgAAAEAAAAAkCAYAAAA5DDySAAAACXBIWXMAAA7EAAAOxAGVKw4bAAALMElEQVRo3r1ZaVRUVxJ%2bNK4oS9M0qAhuCIqicTdq3AWXaEw0atx3VHCLGgWjooA0u7gr7mvEFREQFFxGM2rMoo7JjBOTM2fm10zOzJkfczKL%2bk1Vvfea1w0qHhv6nDrvbu/eW3W/%2bm7Va8XkZ4NizkJ2xFjMbTsLis8W1PFLgWJJhcJ9IqmaaHXqkzE0Njp0JjIiPpQ5TJXG17BYbJXLVbW9Stx4w74ZCAuMw7We78E3YKPURUG7Qo4ifb6ZsAYkyDshzeLlHTfNOLWpvMk/DSarVtfa3APSqm8A3rCJFTJnYw4hoLD7IDSwJkudlXWnPqOIEaivkX8SirsPxIyQOVJ3d0BNLZ08PxsmQmmcLIaw99fbBMV7c8WYVxlCP1U3zRViwqajrEd/DGm5hF5ME5g7CLVFtYxFec/%2bAn9H6NeyC5hTELO6FJHjT0Gps1Ft87VhwYoSBEbsqDDCKxFgh22FEfoGL8fprsNwsksU1oZPEkXnk3D5VNdIkV5BK2Ssm4EXakt5N4a812ZR8sWLF%2bBfn5HHoJgSsDX3vtTjk28IEtyNyKjaAKkOCqjukEmWTEf3oJVYHDYN68IninC5G7VxH48x6S5Ri8o7GIGgP%2bqTM6Lw3375F06e%2b17KF4qeoEHzTEFDNRBgYHhWRDhBO1UiukouQGSnGsr2kpuilgiQRMiOTn34xDzov9LrP4thFJ8U1UivI0Ln6013BZOVFrCmoK51s4NwG/e5vYlUchPbWxtAlCMOUBolIW3bXbsBGAl9RhwTTnC%2bHarlArJZb4K4F520t4vEJ931XKEptffId6I4w3/s9HNSfv78hUqMnsmqoV6LAH1TvmmifPPQdWjXKQ5twuPQ2iAhHeIQGqHV2xv6qNymgza%2bvTpOl7Yd16BJm/WqQS1GY7/9DcB%2b/uDxX1F09ak6p7IBIz85LUZI335XrkjTm5Jg7ppIPCsKwt/PBOO/hS3IqUhKVPl3QTD%2bcTZIbdPbL6vlZ0Ut8EIr/%2bdSsIz9taCFCNdTY8cIElzqAnTCXi2zUT8wQ668Ok1ofo8kdOi7H3W57JPy%2boBIIid/GuiRjbFR84Df%2buO7nf7IizfjZrofHu32x8Nd/ihP9UOZzYLz631RkmzBN9utInp/UaIFhSRfb7Pif4XNyBCBZBxNSqle1gT9%2biwlgqLbw5riEhew84CvzU54cuJMgr626kWDdgM0zMaUMbOAO1bczQnAnS3%2b2LrQB2lzvJGzwAe22d4oTvLDqXgLkmd6Y9V4TyRM9cK%2b5Wak0hhuO7HGF5tneRN6SOGS5nhepElxc6A8AJGDFhFpZbnGALoRqoj7TdY3yAXsLuCbioZNk3E1o7eclnqCrEgzeT4vairPXy/SszwQv%2bQF4J/nmki/3sflZ1zmd0o1KQmU%2bfI2DqxMgq9KXCy1dLU6kKA5HfWa2jCg3xJE0WlFDYpB1OBFIiOGxGD44Bh58kmOGhqDkUPVfm7Xn3q/lIfG4v3IGPTru0xdw5zmSIKaksb7%2bo1Oz3UG0E%2bEoFk/UfyUoap4knhTUuRJ4pGpCrdx3StbG6OV%2bdkwo6KtLpGQQrG4Qv5YP018sw4FLqwsC9clkGFf9VSTGYEz3et6lqeHsTyex8oY6xtme9WOBIkxPYlRpy4soIVtKi94kTHqJdAGE%2bHRPF1E8aINNqb2%2bgm04RTp4zK3mVtnSaCkNNqEbkMOIGvnHWxMu4mWXSgxabBJTVgohhepT3VlPYI678SClSVqnYwRu/qKyuY8tu5GVUkmNfcEYXgp6/NUJ9urjgHE8nQKzTruwJUbP6sWpmslov8BRK%2b4DGvYVmxIvYWzBX8gF0lH/9EnMDm6QE6k%2b9DDmLqgAEGddqKg5Ees3XyTJl2HFevLkbHjHuYuK8ahLx4hoP02LFxVgtbddot8PPsCRk8%2bg15RR7Dv2AOE9tqLd0ccxewlReg84ADep77piy7JGu8MPIj5n15Gv1HH0Yn2NCO20J7tubkMAWTRJuHbJaKSNJLq8Uk3cPzMY9nglj1f4cDxh/iQoq3isqfIy/8BiZm3cerCDzKm36hjKCn/CZ9tvC4ByazFRbh4%2bY/IPfoAE%2bfmiyFOnP0eh04%2bwq6D32L7/q9l3nUpv0HRlacyR7t3c8Vo2/apfRzlrUq4JkENr5e16x52HvgGl0p/FGMwIl4b6FTbAISAph2249qtPyGQkMDl84VPsHXvfVwu%2b0ny7jWJ1zGBlGGUrE2%2biZUbykWx/OInpHChbP6jmedp0nh8uq6MXOAeTuf/HlEf54lC2bu/wq27fxZlGTmToy/i2OnHuH33L4Ku1t334ODJh9h//AFGUIIzZupZ5ND6%2b%2bldPpgW7%2bzC9JhL9M7vkJT5ZfUivWobgAKKhhRa8iY5px5PEI1LvIHk7C/lA0Mrgi2jgOGowvsugmlDMwmOuw99ix7DDmPAmBPyPp/MMIrF%2bxCkuww6iFkE60WrSpG69Y64AcO8Xe9cQQ272PAJeQL5aFqH0cLQZwPxWowAPoicPfcxaV4%2bPph2VhA0esoZ4YNKsf6b8kGlT0yeaiopwoRj1p7sFkxC/PTU2vnpaRijiWyK3zdr8zBh6XM10uZg9tf79HZ9Xb2f2hiNB048xGHiESZIJk6Zn/qqTHTeygD6pngDPmqIaWdZ48cF53YjE/NTV5z7vDUFjYzNdeO7xtxdf1fvJwPz7RRMt4V8/zPuRZ/bbDC2gxGcUvCqMlH7LUAvs98zy3bou0/g7N16i/iYR3AWPIIyUZduAK7zhrjcgJIQbuc6nxRfX41bZEmWxjcK94f32ScMb9Lu/pAee%2bDfbpusyS7HY3jdRrQGk7APrcnv8k3Ec3O7Hi9wO7ex8Fr8Hq9Xv1kG%2bo48hlZddwuiKpDh/A2iCiMY4wBr2DYsW1sm/jphTj7mLC1GHN0E7LNMgpPmXSSfPiT%2bOmdpETZl3BafbNuTrrDhR4XUVm24RnNcxRS6GpvT1bg0/irNdUFuFCbIoeO%2bkGts%2bedlMi/3T1t4SZRfHHdF2mLXXBFuWBJHfcQHPIZJdgk9w%2blweE0m34S0W5gRUyhxRP/Rx4Uk5Wq0R5MGIxgzUaMRjLDmO74NMXHLLrtgaZsjQYpMTPUQUpKRYQ7JQcR7%2b9Ez8ogo7UvjGAF8OrwR/hDB/S3pNPiEw3rlwrtVNnrTfR9GxMeKMjEywXUecJACpkNycjwHG5JPlccxCbYn9PB9z%2bVOFBuw8rwvv9CtdpJsT1cnz2Fus6VqF6AcR6EcR%2bm%2boiIUNxqhEgnqkZo5xZH4vAzkx2UmLRaD/zFcJZb3MBCdkeR0gvVMdiBNh7E%2bhvk9tT69rK/vo83XWGvT91GJBDVFOaqNHQtl2EIan%2bloBGf21GN1vazH387t0met/JVGz8mNY/UkR94zvF/lvC/pN45T/F7eXqUBODyPHgdl/RAolODJ1yndCC7/j84ZUc5li63q9hrJ9gwImE8GiIuCsjYSymCDEWrl7yvOMi36R5A0VeztNWkIgwGiP1INsGoEGWFYhRFq6pu9g/J%2blCJbczSFyV8t5Ld%2bmVpbTaLBaIBxFQb4bISKhCGLasgARmWszM5LKR3uQ2lsIBSTD6W2VkqzOxIhTdYQkVGBEJcawQkB8ZGq8quHqxIf5WIDVPqPnhTzoEUV5eVSN4RugM9VRFhSXPw1yIkD1jACRqookOfIGjCAHfb8hWiwQVkTiZuh7qa1Udm9CRmB/91NrxkX4Cf/NxFGhg5dp4lWdr0LaMp7zXNS9mUocFefDXqRu2Q7EuNb78VgBA6COBp0lpohQIJzvfaGk1eqIXVok6s1PrC5HgEvkf8DVZv/7UuaKgAAAAAASUVORK5CYII=' /%3e%3c/svg%3e)

Best Fixed Deposit Interest Rates
Check out the latest rankings for different terms, investment amounts and age groups.
Updated monthly. last updated 1st July 2022
Read more
' width='1280' height='720' xlink:href='data:image/png%3bbase64%2ciVBORw0KGgoAAAANSUhEUgAAAEAAAAAkCAYAAAA5DDySAAAACXBIWXMAAA7EAAAOxAGVKw4bAAALMElEQVRo3r1ZaVRUVxJ%2bNK4oS9M0qAhuCIqicTdq3AWXaEw0atx3VHCLGgWjooA0u7gr7mvEFREQFFxGM2rMoo7JjBOTM2fm10zOzJkfczKL%2bk1Vvfea1w0qHhv6nDrvbu/eW3W/%2bm7Va8XkZ4NizkJ2xFjMbTsLis8W1PFLgWJJhcJ9IqmaaHXqkzE0Njp0JjIiPpQ5TJXG17BYbJXLVbW9Stx4w74ZCAuMw7We78E3YKPURUG7Qo4ifb6ZsAYkyDshzeLlHTfNOLWpvMk/DSarVtfa3APSqm8A3rCJFTJnYw4hoLD7IDSwJkudlXWnPqOIEaivkX8SirsPxIyQOVJ3d0BNLZ08PxsmQmmcLIaw99fbBMV7c8WYVxlCP1U3zRViwqajrEd/DGm5hF5ME5g7CLVFtYxFec/%2bAn9H6NeyC5hTELO6FJHjT0Gps1Ft87VhwYoSBEbsqDDCKxFgh22FEfoGL8fprsNwsksU1oZPEkXnk3D5VNdIkV5BK2Ssm4EXakt5N4a812ZR8sWLF%2bBfn5HHoJgSsDX3vtTjk28IEtyNyKjaAKkOCqjukEmWTEf3oJVYHDYN68IninC5G7VxH48x6S5Ri8o7GIGgP%2bqTM6Lw3375F06e%2b17KF4qeoEHzTEFDNRBgYHhWRDhBO1UiukouQGSnGsr2kpuilgiQRMiOTn34xDzov9LrP4thFJ8U1UivI0Ln6013BZOVFrCmoK51s4NwG/e5vYlUchPbWxtAlCMOUBolIW3bXbsBGAl9RhwTTnC%2bHarlArJZb4K4F520t4vEJ931XKEptffId6I4w3/s9HNSfv78hUqMnsmqoV6LAH1TvmmifPPQdWjXKQ5twuPQ2iAhHeIQGqHV2xv6qNymgza%2bvTpOl7Yd16BJm/WqQS1GY7/9DcB%2b/uDxX1F09ak6p7IBIz85LUZI335XrkjTm5Jg7ppIPCsKwt/PBOO/hS3IqUhKVPl3QTD%2bcTZIbdPbL6vlZ0Ut8EIr/%2bdSsIz9taCFCNdTY8cIElzqAnTCXi2zUT8wQ668Ok1ofo8kdOi7H3W57JPy%2boBIIid/GuiRjbFR84Df%2buO7nf7IizfjZrofHu32x8Nd/ihP9UOZzYLz631RkmzBN9utInp/UaIFhSRfb7Pif4XNyBCBZBxNSqle1gT9%2biwlgqLbw5riEhew84CvzU54cuJMgr626kWDdgM0zMaUMbOAO1bczQnAnS3%2b2LrQB2lzvJGzwAe22d4oTvLDqXgLkmd6Y9V4TyRM9cK%2b5Wak0hhuO7HGF5tneRN6SOGS5nhepElxc6A8AJGDFhFpZbnGALoRqoj7TdY3yAXsLuCbioZNk3E1o7eclnqCrEgzeT4vairPXy/SszwQv%2bQF4J/nmki/3sflZ1zmd0o1KQmU%2bfI2DqxMgq9KXCy1dLU6kKA5HfWa2jCg3xJE0WlFDYpB1OBFIiOGxGD44Bh58kmOGhqDkUPVfm7Xn3q/lIfG4v3IGPTru0xdw5zmSIKaksb7%2bo1Oz3UG0E%2bEoFk/UfyUoap4knhTUuRJ4pGpCrdx3StbG6OV%2bdkwo6KtLpGQQrG4Qv5YP018sw4FLqwsC9clkGFf9VSTGYEz3et6lqeHsTyex8oY6xtme9WOBIkxPYlRpy4soIVtKi94kTHqJdAGE%2bHRPF1E8aINNqb2%2bgm04RTp4zK3mVtnSaCkNNqEbkMOIGvnHWxMu4mWXSgxabBJTVgohhepT3VlPYI678SClSVqnYwRu/qKyuY8tu5GVUkmNfcEYXgp6/NUJ9urjgHE8nQKzTruwJUbP6sWpmslov8BRK%2b4DGvYVmxIvYWzBX8gF0lH/9EnMDm6QE6k%2b9DDmLqgAEGddqKg5Ees3XyTJl2HFevLkbHjHuYuK8ahLx4hoP02LFxVgtbddot8PPsCRk8%2bg15RR7Dv2AOE9tqLd0ccxewlReg84ADep77piy7JGu8MPIj5n15Gv1HH0Yn2NCO20J7tubkMAWTRJuHbJaKSNJLq8Uk3cPzMY9nglj1f4cDxh/iQoq3isqfIy/8BiZm3cerCDzKm36hjKCn/CZ9tvC4ByazFRbh4%2bY/IPfoAE%2bfmiyFOnP0eh04%2bwq6D32L7/q9l3nUpv0HRlacyR7t3c8Vo2/apfRzlrUq4JkENr5e16x52HvgGl0p/FGMwIl4b6FTbAISAph2249qtPyGQkMDl84VPsHXvfVwu%2b0ny7jWJ1zGBlGGUrE2%2biZUbykWx/OInpHChbP6jmedp0nh8uq6MXOAeTuf/HlEf54lC2bu/wq27fxZlGTmToy/i2OnHuH33L4Ku1t334ODJh9h//AFGUIIzZupZ5ND6%2b%2bldPpgW7%2bzC9JhL9M7vkJT5ZfUivWobgAKKhhRa8iY5px5PEI1LvIHk7C/lA0Mrgi2jgOGowvsugmlDMwmOuw99ix7DDmPAmBPyPp/MMIrF%2bxCkuww6iFkE60WrSpG69Y64AcO8Xe9cQQ272PAJeQL5aFqH0cLQZwPxWowAPoicPfcxaV4%2bPph2VhA0esoZ4YNKsf6b8kGlT0yeaiopwoRj1p7sFkxC/PTU2vnpaRijiWyK3zdr8zBh6XM10uZg9tf79HZ9Xb2f2hiNB048xGHiESZIJk6Zn/qqTHTeygD6pngDPmqIaWdZ48cF53YjE/NTV5z7vDUFjYzNdeO7xtxdf1fvJwPz7RRMt4V8/zPuRZ/bbDC2gxGcUvCqMlH7LUAvs98zy3bou0/g7N16i/iYR3AWPIIyUZduAK7zhrjcgJIQbuc6nxRfX41bZEmWxjcK94f32ScMb9Lu/pAee%2bDfbpusyS7HY3jdRrQGk7APrcnv8k3Ec3O7Hi9wO7ex8Fr8Hq9Xv1kG%2bo48hlZddwuiKpDh/A2iCiMY4wBr2DYsW1sm/jphTj7mLC1GHN0E7LNMgpPmXSSfPiT%2bOmdpETZl3BafbNuTrrDhR4XUVm24RnNcxRS6GpvT1bg0/irNdUFuFCbIoeO%2bkGts%2bedlMi/3T1t4SZRfHHdF2mLXXBFuWBJHfcQHPIZJdgk9w%2blweE0m34S0W5gRUyhxRP/Rx4Uk5Wq0R5MGIxgzUaMRjLDmO74NMXHLLrtgaZsjQYpMTPUQUpKRYQ7JQcR7%2b9Ez8ogo7UvjGAF8OrwR/hDB/S3pNPiEw3rlwrtVNnrTfR9GxMeKMjEywXUecJACpkNycjwHG5JPlccxCbYn9PB9z%2bVOFBuw8rwvv9CtdpJsT1cnz2Fus6VqF6AcR6EcR%2bm%2boiIUNxqhEgnqkZo5xZH4vAzkx2UmLRaD/zFcJZb3MBCdkeR0gvVMdiBNh7E%2bhvk9tT69rK/vo83XWGvT91GJBDVFOaqNHQtl2EIan%2bloBGf21GN1vazH387t0met/JVGz8mNY/UkR94zvF/lvC/pN45T/F7eXqUBODyPHgdl/RAolODJ1yndCC7/j84ZUc5li63q9hrJ9gwImE8GiIuCsjYSymCDEWrl7yvOMi36R5A0VeztNWkIgwGiP1INsGoEGWFYhRFq6pu9g/J%2blCJbczSFyV8t5Ld%2bmVpbTaLBaIBxFQb4bISKhCGLasgARmWszM5LKR3uQ2lsIBSTD6W2VkqzOxIhTdYQkVGBEJcawQkB8ZGq8quHqxIf5WIDVPqPnhTzoEUV5eVSN4RugM9VRFhSXPw1yIkD1jACRqookOfIGjCAHfb8hWiwQVkTiZuh7qa1Udm9CRmB/91NrxkX4Cf/NxFGhg5dp4lWdr0LaMp7zXNS9mUocFefDXqRu2Q7EuNb78VgBA6COBp0lpohQIJzvfaGk1eqIXVok6s1PrC5HgEvkf8DVZv/7UuaKgAAAAAASUVORK5CYII=' /%3e%3c/svg%3e)

Best Notice Deposit Interest Rtes
Check out the best interest rates for notice accounts for different notice days and investment amounts.
Updated monthly. last updated 1st July 2022
Read more
' width='1280' height='720' xlink:href='data:image/png%3bbase64%2ciVBORw0KGgoAAAANSUhEUgAAAEAAAAAkCAYAAAA5DDySAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKHElEQVRo3s1ZeXRU5RV/E4lls1JBRZYWWW0tJIEC2VeYTCYkEUGWsAoIkoVsM1mAbGQhMwkBEiCEXQQk4RAWISYSdrUoJQXqsVop0lO1Pdaj9S%2b70P567/fem3mTTHByzkzoH/d82/2%2befd37/19y0heuUZIa0Jx8MZ5ZJ7ZBSk5AN55MyBlGyDlxDgXGvPOiyNdf2Q378X%2b35yjNUIg1upqjrslm0uDXGrrTvseIOKjMyLwy%2bpX8cnfPsegDXNFW4DQxSQxlh6Op0sSxZyfV62kOZEyAA8CzlPGq221z%2bwMoC6EP/iR3FhIqcHIeLMe7V/cQZ/1L1A7SCj0yovFIyykw3UxKSUIjxW8iJtf3kXKyR1irlijJ4zP6eDtdXpIa/WOYKyfDik32hGYLgFQKsJ7aaFY23IAv//qz4g7UATJRAslB4q0kEsSsx4zD5bgk68%2bh/nsHpE%2bPRr6ORpDc8mwuBWQFiRCyp9mNzh%2bOTkpwQ7CAyNAyWkudYIPQhC1KxdXP/sQF%2b/cQtXl48JQE0nVleO49MfbuHz3NsJ2ZjvmfY95XzEoj4xLoUgdVAFpoAXSUkrdAgIhJBVSr1pI0avkSDC7AoDGABHKaWGQsqYhaEcW1rceRPWVJiFcD9yRCSkzijggTNbtaeO1EbCWQJi/ENKASkhDSyFNzoLUdzOkiWb6/lgXOaADu7PYvEpEJ4e/v1IGyH1qyvS04VoOYGHvstcTF8hR0K8a0oQcmRNyDa7tBA4LKhN0JF45TI5GYvxYPErirQj3eSk63REH4soxuIcE2Ug2NiJZjoKfWCkSSuR00HLCD5Ogo/GSmbxrMsplR%2bmq/4ES4wQEN22DQWmQvGsgTaHUnLtIBoF5gYkxz2US1CxIHzyMwuq5DREYVRiJkYVRNhldFImxxRFyu8Dez3XWHaXUWU%2bVMSSD2RsMnKuHE1cB4Dwfkw/JN1tOR/p9aT6lwwACITxZ3iJd4wC7Z3bvG4/7bw3DNyefxb9ahgFtzwDnZPlH83B8S/1oG6zpHyLq91uG4r9vy/V/Ng8Tut8rwm3LLl85Z92ZAuzhDDqUZRnlOkcbG71ylgx4rgsRJ5hfQfMFaxBw%2bUncrPdFY1E4rmyZgt/tnoDbu3xwoXoqzm/yx4nSULRaA9C%2b0w/tdX407iPGmyuCcJbkBvX9%2b%2bxwoHUo0KIRAie4PFR8mJc7UyDX0PkYzLyQ0w0SFABkxmLBpgABwPs7/HBt%2b0TUZMbAmhqHrRlGVKTE4y1rIBqKw1GWlADzkjkoWjkTe/Kmw5ISJ/qOFEagPDke3zSNJACG4D8USaowAPqKYAG0WwDo6tyf3dW4CynQh8Ko7cg48bFsAPjD2XtsBHuVyu9PjRBh/nXjaHzHhtK4Osb1%2b1znOa2O3m88%2bAv3kaA7RUVUp%2byr3nkxiKwIh9EaCoM1BNGWYCEGSg%2bDNRjGyiDhydiqQKoH2saiLfJ4DIme%2blhnOkkM1YPLw5QzhptI0O0A5KgHIKpnRtKBhz44iSSdcslE115znFymM%2bkYlHY8hTMRkGmGzMbclxEj65jVOTSWSWSUxQAb5TOEcnr0EnXjwzlJOrsLiHsAHXHH07W49p2TsFw8ihEbaV/NYCCIvFICMP9wGULrskRdWkP5bKLtLTOCDKM1UgNpLBNzDpXKJ0eeQ2N918WjzzoCIytKPkXyPDaYrs98%2bZKyox8uCLYK3fL6589E26e/xYz9heKhw3RmNwaXJoor78DiubBeOob5RywYW7kCWTQ2vHwxJtemoS9dn3%2b2cQndFV5D0blDYk7yye3ibaH0/BtovHVFXKlj9ubj5cZqPLo2DlO3pdOtcgN6r6Nbmzn64UaA8D55hy86B/h1Z%2bVE%2bdxP6bDmVB1ebz8vhI3beLEBez5oQSr1L2moQuPtKwKAkrYj2PV%2bM9LfrMerTbVoIKN3k962906j/loz5h3eiL3XW1FxsRHF5w7jHAFdduGoSI2HnwIsdPcfWDxHXHd9tiRh9utlSDqxDfvoo6uvNuG9ex9h89UTOHrzMmrfPYUhZQsRu78Apz%2b6huA6Ew61X8DeD1phoShhgOp%2bfQbNH19H2umdIlqWHasWIPGchluXBUDiNkm3Tt3/QwoIQiKPh9Vn4%2bCNNmHM%2bM2rRShz6DMYi8njHPLs4aYP30Xg9kxh0L7rb4uUSXzDgvgDxeLtoPxCA1Yer8Fo63JsJU7hJ7fitsNi3XGVr2BVU414VXI5/LUAuRMs7aI65X2QvSJIiut89%2beP5N2BX4hYeEzV4ZIJjnVNerkt5ujlUuhHKO1IuU/MmdZ9Q1R9twOgLsiGCtHbPeMwpte09TZ929sAA2BSdHgsWxWDDITy3mAnXmWMdcR4tF3Htr6yJo%2brc1wFQQtYV%2bAJElQ4YCjlNYcss/yPC2YJhmaC65U3A0%2bXzMdTJMzg/CrcP/9F%2bG1NEf2PF84SL8Rc/%2bnGxbTtJYi%2bxwtni52FQ31ExVL0o7V4TV7DsHe9SDE2qDdtlbzLcD//Fu8YPI91eS5z0xNFcxBAKSdeoAVvGLsPgDMQZADkM8CkmlTEHSgUTM75zHmfdGI7nildgOXHNmNRQyXmHamgvb5clHOJ2RNeKyYSzMLCo1bR5i2TOWIZ6fN8nsdEyOsNK18k%2bnjMcqkRoTvN8N2SjKWNm8RDK5cR9TkIJx7iOatpnRLaRnm7nH2oDCF1Zoy0vGwnzu6kzdpY5yBow5G9xt4dU7kc46pewbPktTEUEeyJJzfMwwDyqA99MHv%2b%2bepVtBMsIM%2b8JMrBFAGswwQ3uXaNaPM67OUJm5MoApYIr462LhPrMilylI2vXo3nN63CKOrnPhb2ODtjUs0aTKHzAkfBU7T2IIoSe9q4mAJ8SEun9EnwdQ5CpzznukpSNrLS8AKTmEpknJtmJT/VuiDBSEdCVMmQ17GtK/eJrVDV5b6sKA1hRspEa%2bMlffdJkwEw0fzHekMKGg2pIM4RBGdbC6eELDGdcs0%2bZnQIQ512PNc%2bt6OuziZGh/1fq6sezrju9D8HV3cBVY8BeKIfGStBCh8HKV8Dgmefrw3OiagjKXnqIKQFYKACAEvYWDsIHjVeKb0UcYgk/kvOGUCeAkCNAJ0GBE6HnjBeymMWNgqjf2Q2wNts7xMHME%2bB4BQAnT0SQsd6AICOxpCRz6VMQ%2bFLQTgdPRnvRE1C2/RfoS7BH7HL5D9ZmKi8PAGCMwA6iaeMVwxLSQzBZ8F%2b%2bNbfB38N8MUXgb74kuRrarMcip2KgRn6ziC4nQP6ywZ76eQ04EjguidITw57I0zzgvHdVB/cC/LFpyF%2buBtslzuK/J3GW/ST0T8r2sYNHnHIihBISwNJghzF3SmgGh%2bwKhJ/IU%2brBjMIHAmqqO0/EDAMUtmsQDHPy1M8wIegdU7E3RGgUw4fu%2bP9RYjf0Rh7TyNaMP5E4x%2bH%2bmF42nQxV%2bfuFLBdsDpvw/8DUa3YxMtQ8%2bgAAAAASUVORK5CYII=' /%3e%3c/svg%3e)

Fixed Deposit Calculator
Calculate the amount of interest using my fixed deposit investment calculator.
Read more
' width='1280' height='720' xlink:href='data:image/png%3bbase64%2ciVBORw0KGgoAAAANSUhEUgAAAEAAAAAkCAYAAAA5DDySAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAKyUlEQVRo3r1ah3dT5xVX/4D2pOMcwijDsQm2bEvykLcxwxDAxqwwYvbeBEIpBMoKNSvsAyZlBUISSAhtmWbTNmlISNpDaZv2xJIsW7ZleWIbyvSv996nJz0JGdwi2%2bdcvv29d3/33t/93id0llQTqhMNGDIpA8tHpqDBHI3v00woSjHCRmMsRW7xtGmM5/DcpaNSMXxihuxh8ZvfmmJL4dIopbYeuK950Vnpn4okIwr6xaPr/Ex8mxFDbYMoaEsNLDzmojlf94qVNZcy4%2bCkPaxucNpSeQuJ1d329sUEAKMZAPiFC6lSm2DACvKAiDl98V26CXXUZmUL/YT7eOzvPWPQY25frH49RdYWpnq9pvU9wGttV1okytOiBQhV2ap0PUpSDZ45ijQDgGpVtl4VufHi0akImZeJ/dmJKEk2op6U00oJKbl3cCK6keXZ/bWub2ujEFAVLSYl1%2bhH4ohxAGpIae6zk7Lr9CNwIyEZDjcIz/QAm8ZyDEINKXR0UALiZvVB4szemDo2XRRdRt7BdfPMPiLHBpplrlXDC20V/%2bzyrNyXpKTuZxug%2b%2blGnIjJRF16BCaEToHuh3uwuEeueII3HJoLAT8F2JqVpFgpWf/TAWYsIo%2bYTIqzcP0E9ZXRWGWShvTaUHnVAxiEMnL9A8ZB0P1kM37cbi2yus2G7qUdyOw6D/9KjhNveD4HaBheCIxEVYyJjpleK9ynAhUoUxS1EQewsHXrekbgkHGgeIHupe1I6bxQOIE5wNqCTKDTbqglDRuJldi%2b0E%2bskh2MGnJpubSElP4XEiym0pkWhendJ5IXvEsgKJ7A4cCcYG0JCfqzqtQTSVG32DQSqE87ZmtOkgKBHJw0OPqV6dD9aDeyyf33GrIkHH5AvMDEyCFibUkIeDZMVl64ZEA0ynMi4ciORnGWVxzZUSjLifLpU6WE5pZ45ilzpRxM8/tHK0C08HDSEgA4vjnOX%2b24DD27LJBwrO8ZjoMcDgTCtO6TUEHeYW0ZB3gtU78%2bFDjXEXdPdpUSF19W5EJ7NJ3ppPRfetmnX8rzHbz1s53whOY2qULtupVhPp7woiHAipWShW8nxePfybGSFQqJE1jpC/E98T3Vi33OAs8CII02jI%2bBc0oE8Hk7/PU3Rhxfk4Hr28342z4DbpFc2ZqAy1sScXJdOgo2J%2bPbvSZ8Q3LLPX52YwrObEjBzXwTHp7tTGB0RFMBAchCdVzqiPIxFJdm5XnBCAGr%2byxgd9cVYjQJCdr9jsbPByCO0JtJAHzRDt/sMeGr3THYtWgANs/Lxs6FA7FxbjYKNiXjEwImb3YOlkwYiTXTh%2bLA0kxsorG8WTn4eFUvrJ89GLWfhZDSHdB0jqx/XhFc7gjneL0AHQwAmjv3qymy5UdhTQjYM4y4l99NXhYXO%2bIxv/wFcueCTnh47udSNp6iELjSHs5Pw1BzMkTGeUzm0vgDsn7TBbfVVaH9GreGBCRBWxt8OzzzY8iXBMk6GbFwjouGc1IUKsZHKDIhAq4JSr1yYrhYsnpSOKom6%2bGieSwVE/UyzvOcVDonRMo8J7XLR0cqlkhWwX4agEB9bQiA%2byWSomAxvILCHiQR3cVdrYnxsCbEUuxqJQYWKgsNehSGh9L8UFiMkTQvjuYrYjERA8dES58tKU55YHqMcmhKi6U%2bygwJkVQn0NNjpbQlG0SkT%2b2X%2bd56sMHRqQ/gl3G8noXaQ%2b%2bh7ugB1ORvp36Kp%2bhuNBahSHIUpTP66EiKlLI0dwjufHIUdz46BMeoQcQjr8IaGwZLZBe4VrwF5/ypsER1gdUQIvtb48PloZaobiibNhaulb%2bERU/jpjBaS2O9zLD3ToDNHEH79IAlOkQA4XVWY6gCTpBB8B6FeXN6gYqlb%2bL%2bd/9A6bjhKBnaH1Ub1qCUCK900mgUZ/eBI3coHGNyZM29r2%2bg4u23UL1jM2re2yXj1VvXS1l3eB8q81YRqINQs3sbSkYMRNnUXNj7JqNkOH295e9A3ZED7jUbUDy4L2r37cHdP16lMIyH882ZqNq4Vt6pbEquPMeemSye0zohQF7AqBcPykDDhbNiGdfqZWg4fxr3vvwczoWz0HjlAhoKzogSpeNGSLswrD0sEZ1lbdW7eTLeeKkAtfvzRcGG079F9fZNqFy3Eo1XL4kStft2o%2bEM9e/aIko2Xi5Aw7lT5E0fouHs7%2bFavljadYf3o%2b79fbj35z/hzrEPUNQzzuMFQfcAAcKsh2NkFu7d%2bIJcVo/6k8dx5/hRPCyyomzyGNy/fQt3r18Wd7X3T8V//nJTrMpew1asP31SXvT%2bP29TeRSNF8%2bh/ncnUDKkPyoWzyXrXkP5vKmipCj40WHUnzqJ%2bs%2bO4d7Nr2SPmr274FrzNuo%2bfJ%2b8YAaBdhGN1y5TaCRKaEi4tkYICACJdGwdmEEW2yhgVK5fjTsfH0H1zncpFNaifO5UuFYtRdn08RLH5bMniYewQqUTR6Nq0zpRqnrbRlS%2bswJlM8ajivYQxedMES/iuez%2blWuXo2LZQtm77oODqNqyXjiIvaB04ijFS2hvxxtDad93UPxaetDd35cDNOmIrS8XD2RpISEumbXJAiJqyHC/Wa%2bQVFwPZUydnxglIv20nzKuV%2boULjLObV5De1vjI5T57jHZI979vITIgOky%2bGmQ0xC/GJeUEgUMibkYpZ9BcPd55qmijmmBTDF40puXbKN9c75m3VNKqunwBc4Hzztf6LTuz7HqGDVYWN7eL1VSkr1vkpAPszVLUYZZWJrJTDIDsTfzAWcMe58kZQ2JpDRaWzp2OMrnT5P5nMuLB6TT3ime3F48qJeyhvbg8wFnDZ4vhOf3wi8EgBtI/z085wB2wbIpb6BiyQKJy0oioqoteRKbJTmZEssc18wBrl8tUUrK4xXLFknMVuatlnRXtfnXorRrxS%2bkzWsklVKfrKfMwnOcC2YI2JwFOF3W7NkuzyyfM1mINRAA/6/yXLJ%2bgYD0OQfY%2b6eJdR2jc4h8hggpcZ0tVJzVG3YiIla2jCwv54ScfooF2RvY0rMnK/OpzR7hyB0mFi0Z9pp4DyvHZwBOoZxVuE8ApLXcds6fTl7YTzxDJbwXBoH2sWemkEEWK1nEDwS/o3C0hwQViVRKNcZZmJiEnPReXuBxs4bohCMi3aQXqRx5NQSrEqfKJ0Ki7lOirA0i4THnsFEfVThReyBfjvracNAFjC8P%2bfiSkM9YS/o1e3hIrrl5fvk9WGwvBEzhxGcZ/uOwtBrDPM/Xtf7trb8yxqduhbQZINipTgAgD3hgs0D943OICoKuLX6%2bkguQNKPnk9inP6i3xc0DoHpA05PHGhBCWwsAX%2bWtCSa5ceI2X7oUpfv2tSYITwHw%2bBGampoUEOgDTteqyqcqd42lw6JwZ20Y7h/sikfHOuPh0S5o3BYC17RwxSOSTB4PCTYIHgDsNgUAt/Lqn661lBd3TzShdml35U7wegflqu2SW65R%2b2oHuYIr7meQub4gBJkDrIUKAI8ekhc8pvKRiK41frIStzebULeiO/CHDnIzzFfj2ktSqZ9TgHlwpAudNQyea/MX/d0g0GGIP6r45MrnGK3ogv4fF9xX7OW5erG051a4wFv3aZ/pJCDV54VqboyNQVVesgzfMsWFe84cqrSKB7A7390ZIi4uVnYriwKv%2bIPx5HQnOLKUX5CCGgL%2bH1Z%2b8l/8A4WPcCb%2bUwAAAABJRU5ErkJggg==' /%3e%3c/svg%3e)

Tax Calculator
How much tax will you pay on your fixed deposit? Check out my tax calculator.